Synthese von 4H-Pyrano[2,3-d]pyrimidinen

Štefan Marchalín, Dušan Ilavský* und Milan Bruncko

Lehrstuhl der Organischen Chemie, Slovakische Technische Hochschule, CS-812 37 Bratislava, ČSSR

Synthesis of 4H-Pyrano[2,3-d]pyrimidines

Summary. Good yields of substituted 5-(5R-2-furyl)-4H-pyrano[2,3-d]pyrimidines **4** were obtained in the reaction of 2-ethoxymethyleneamino-3-cyano-4H-pyranes **2** with ammonia. Compounds **2** were prepared by the condensation of the starting 2-amino-5-acetyl-3-cyano-6-methyl-4H-pyranes **1** with ethyl orthoformate. Spectral properties of the bicyclic system **4** in relation to compounds **3** are discussed.

Keywords. 2-Amino-3-cyano-4H-pyrans; 4H-Pyrano[2,3-d]pyrimidines.

Einleitung

Viele Pyrimidine und deren kondensierte bicyclische Derivate besitzen eine wichtige biologische Aktivität. Nur wenige Synthesen von 4H-pyrano[2,3-d]pyrimidinen sind beschrieben, hauptsächlich durch Umsetzung von Barbitursäure und deren Derivaten [1-5]. Soto u. a. [6] beschrieben die Reaktion von substituierten 2-Amino-4H-pyrano[2,3-d]pyrimidin-Derivate isoliert, sondern die 2,6-Diamino-4-arylpyrimidin-5-carbonitrile. Die vorliegende Arbeit beschreibt einen neuen, einfachen Zugang zu dem bicyclischen System der 4H-pyrano[2,3-d]pyrimidine.

Ergebnisse und Diskussion

Die in dieser Arbeit verwendeten 2-Amino-3-cyano-4-(5*R*-2-furyl)-4*H*-pyrane 1 wurden durch eine morpholinkatalysierte Reaktion von 3-(5*R*-2-furylmethylen)pentan-2,4-dionen mit Malodinitril dargestellt [7]. Durch Kondensation der 4*H*-Pyrane 1 mit Orthoameisensäuretriethylester entstanden in guten Ausbeuten (siehe Tabelle 1) die 2-Ethoxymethylenamino-4*H*-pyrane 2, die mit Ammoniak 2-Formamidino-4*H*-pyrane 3 liefern. Ammoniak läßt sich dabei in wäßriger oder ethanolischer Lösung einsetzen. Die Reaktion ist schwach exotherm, und die Abscheidung der unlöslichen Derivate 3 erfolgt in wenigen Minuten. Das Auftreten der Nitrilbande bei 2 200 cm⁻¹ im IR-Spektrum von 3 ist ein eindeutiger Nachweis dafür, daß keine Cyclisierung der Formamidine 3 zu 4*H*-Pyrano[2,3-d]pyrimidin-Derivaten 4 eintrat, wie es in Fällen bei heterocyclischen Ortho-enaminonitrilen geschieht [8-10]. Erhitzen der intermediaren Formamidine 3 unter Rückfluß in

50% wäßrigem Ethanol führt zur Cyclisierung, wobei die 4*H*-Pyrano[2,3-d]pyrimidin-Derivate **4** in sehr guten Ausbeuten entstehen.

Die spektroskopischen Daten (UV, IR, NMR und MS) der Verbindungen 2-4 sind im Einklang mit den angegebenen Strukturen. Die ¹³C-NMR-Signale für die einzelnen Kohlenstoffatome in den Verbindungen 4 wurden durch Vergleich sowohl mit den Spektren der substituierten 4*H*-Pyrane $\lceil 11 - 13 \rceil$ als auch den Verbindungen 2, 3 zugeordnet. Durch Anellierung des Pyrimidinringes erfolgt eine Verschiebung des Signals des Pyranringes in den Verbindungen 4 (im Vergleich zu den entsprechenden Signalen der Derivate 3) zum niedrigeren Feld. Dieses ist im Falle des Atoms C-10, welches sich in der Stellung meta zu allen Heteroatomen befindet, am deutlichsten ($\Delta\delta 23.0$ ppm). Die ¹H-NMR-Signale des H-5-Protons in den Verbindungen 4 zeigen analoge Verschiebungen zum niedrigeren Feld (im Vergleich zu 3; ($\Delta \delta 0.49 - 0.56$). Die Verbindungen 4 sind massenspektroskopisch nicht von den entsprechenden Derivaten 3 zu unterscheiden, bedingt durch gleiche Molmassen und durch identisches Fragmentierungsverhalten (gemessen mit den Verbindungen **3a** und **4a**). Dieses läßt sich durch die erfolgende Cyclisierung des Formamidins 3a zur Verbindung 4a bei der Aufnahme des Massenspektrums erklären.

Experimenteller Teil

Die Schmelzpunkte wurden auf dem Heiztischmikroskop nach Boetius bestimmt und sind nicht korrigiert. IR-Spektren: UR 70 Zeiss Jena Specord, in KBr (cm⁻¹). UV-Spektren: Specord UV VIS Zeiss Jena, in Methanol (nm/log ε). Massenspektren (MS): AEI MS 902 S, Angaben in m/z (rel. %). ¹H-NMR-Spektren: Spektrometer Tesla BS 487 (80 MHz), *HMDS*, *DMSO-d*₆, δ in ppm, J in Hz. ¹³C-NMR: Jeol FX-100 (25.04 MHz), *DMSO-d*₆, mit indirektem inneren Standard bezogen auf das Lösungsmittel (39.50 ppm, δ in ppm, J in Hz). Die C, H, N-Analysen der in den Tabellen 1–3 angegebenen Verbindungen (**2**, **3**, **4**) stimmen mit den Formeln überein.

Verbindung 2	Schmp. (°C)	Ausb. (% d. Th.)	Summenformel	Molmasse
a	110-112	87	C ₁₆ H ₁₆ N ₂ O ₄	300.31
Ъ	100 - 101	73	$C_{18}H_{18}N_2O_6$	358.35
с	92-93	74	$C_{22}H_{20}N_2O_4S$	408.47

Tabelle 1. 4-Substituierte 2-Ethoxymethylenamino-4H-pyrane 2

Tabelle 2. 2-Formamidino-4H-pyrane 3

Verbindung 3	Schmp. (°C)	Ausb. (% d. Th.)	Summenformel	Molmasse
a	207-210	78	C ₁₄ H ₁₃ N ₃ O ₃	271.28
b	192-194	96	$C_{16}H_{15}N_{3}O_{5}$	329.31
c	182-184	86	$C_{20}H_{17}N_3O_3S$	379.43

Tabelle 3. 5-Substituierte 4H-Pyrano[2,3-d]pyrimidine 4

Verbindung 4	Schmp. (°C)	Ausb. (% d. Th.)	Summenformel	Molmasse
a	202-204	77	C ₁₄ H ₁₃ N ₃ O ₃	271.28
b	179-181	71	$C_{16}H_{15}N_{3}O_{5}$	329.31
c	174-175	80	$C_{20}H_{17}N_3O_3S$	379.43

5-Acetyl-3-cyano-2-ethoxymethylenamino-4-(5R-2-furyl)-6-methyl-4H-pyrane (2 a - 2 c)

5 mmol der Verbindung 1 werden mit 5 ml Orthoameisensäuretriethylester 16 h unter Rückfluß erhitzt. Nach Abdestillieren des größten Teiles des überschüssigen Orthoesters wird der Rückstand aus Ethanol (Aktivkohle) umkristallisiert.

4-(2-Furyl)-4H-pyran (2a)

UV: 210 sh (3.08), 239 (3.43), 287 sh (2.60). IR: 3112, 2985, 2200, 1688, 1648, 1610. MS: 300 (M^+ , 34), 271 (9), 257 (28), 243 (6), 229 (11), 228 (10), 227 (31), 212 (5), 201 (25), 185 (8), 173 (4), 159 (6), 121 (5), 43 (100). ¹H-NMR: 1.31 (t, 3 H, CH₃), 2.21 (s, 3 H, CH₃CO), 2.29 (s, 3 H, CH₃), 4.34 (q, 2 H, OCH₂), 4.86 (s, 1 H, H-4), 6.26 (dd, 1 H, H-3', J_1 =3.2, J_2 =0.9), 6.35 (dd, 1 H, J=1.8, H-4'), 7.46 (dd, 1 H, H-5'), 8.44 (s, 1 H, N=CH). ¹³C-NMR: 13.8 (q, CH₃), 18.5 (q, CH₃), 29.5 (q, CH₃CO), 33.8 (d, C-4), 64.1 (t, OCH₂), 78.7 (s, C-3), 107.1 (d, C-3'), 110.8 (d, C-4'), 111.8 (s, C-5), 117.1 (s, CN), 143.1 (d, C-5'), 154.1 (s, C-2'), 156.4 (s, C-6), 156.9 (s, C-2), 161.9 (d, CH=N), 197.8 (s, CO).

4-(5-Methoxycarbonyl-2-furyl)-4H-pyran (2b)

UV: 215 sh (2.92), 250 (3.39), 263 sh (3.36), 305 (2.73). IR: 3145, 3011, 2962, 2200 (CN), 1720, 1653, 1600. ¹H-NMR: 1.30 (t, 3H, CH₃), 2.26 (s, 3H, CH₃CO), 2.34 (s, 3H, CH₃), 3.81 (s, 3H,

OCH₃), 4.35 (q, 2 H, CH₂), 5.06 (s, 1 H, H-4), 6.58 (d, 1 H, J=3.5, H-3'), 7.28 (d, 1 H, H-4'), 8.60 (s, 1 H, CH=N). ¹³C-NMR: 13.8 (q, CH₃), 18.7 (q, CH₃), 29.8 (q, CH₃CO), 34.1 (d, C-4), 51.8 (q, OCH₃), 64.2 (t, OCH₂), 77.8 (s, C-3), 109.8 (d, C-3'), 111.3 (s, C-5), 116.8 (s, CN), 119.5 (d, C-4'), 143.5 (s, C-5'), 157.3 (s, C-6), 157.3 (s, C-2'), 158.0 (s, CO₂), 158.8 (s, C-2), 162.4 (d, N=CH), 197.2 (s, CO).

4-(5-Phenylthio-2-furyl)-4 H-pyran (2 c)

UV: 213 (3.28), 245 (3.58), 294 sh (3.03). IR: 3054, 3000, 2960, 2200 (CN), 1687, 1645, 1600. ¹H-NMR: 1.30 (t, 3 H, CH₃), 2.24 (s, 3 H, CH₃CO), 2.29 (s, 3 H, CH₃), 4.34 (q, 2 H, OCH₂), 5.01 (s, 1 H, H-4), 6.51 (d, 1 H, J=3.2, H-3'), 6.93 (d, 1 H, H-4'), 7.03 – 7.28 (m, 5 H, aromat. H), 8.55 (s, 1 H, N=CH). ¹³C-NMR: 13.3 (q, CH₃), 17.9 (q, CH₃), 29.0 (q, CH₃CO), 34.1 (d, C-4), 63.8 (t, OCH₂), 77.5 (s, C-3), 109.2 (d, C-3'), 111.5 (s, C-5), 116.3 (s, CN), 120.3 (d, C-4'), 126.1 (d, C-*para*), 126.7 (d, C-*meta*), 128.8 (d, C-*ortho*), 135.2 (s, C-*ipso*), 141.5 (s, C-5'), 155.7 (s, C-2'), 157.0 (s, C-6), 158.4 (s, C-2), 161.5 (d, N=CH), 196.8 (s, CO).

5-Acetyl-3-cyano-2-formamidino-4-(5R-2-furyl)-6-methyl-4 H-pyrane (3a-3c)

Zur Suspension von 5 mmol der Verbindung 2 in 15 ml Ethanol werden unter Rühren 8 mmol Ammoniak (z. B. in Form einer wäßrigen Lösung) bei Raumtemperatur zugegeben. Nach 4 h Rühren wird das ausgefallene Produkt 3 abgesaugt, mit kaltem Ethanol (5 ml) gewaschen und aus Aceton umkristallisiert.

4-(2-Furyl)-4 H-pyran (3 a)

UV: 263 (3.26), 303 sh (2.79), 211 (2.90). IR: 3 380 (NH₂), 3 110, 2 195 (CN), 1 683, 1 630, 1 585. ¹H-NMR: 2.18 (s, 3 H, CH₃), 2.23 (s, 3 H, CH₃CO), 4.73 (s, 1 H, H-4), 6.16 (dd, 1 H, J_1 = 3.1, J_2 = 0.9, H-3'), 6.35 (dd, 1 H, J= 1.8, H-4'), 7.54 (dd, H-5'), 7.70 – 7.83 (m, 1 H, N=CH), 8.15 [s (br), 2 H, NH₂]. ¹³C-NMR: 18.6 (q, CH₃), 29.5 (q, CH₃CO), 33.9 (d, C-4), 70.7 (s, C-3), 106.2 (d, C-3'), 110.6 (d, C-4'), 112.1 (s, C-5), 119.2 (s, CN), 142.6 (d, C-5'), 155.0 (d, N=CH), 155.3 (s, C-2'), 156.7 (s, C-6), 159.8 (s, C-2), 197.7 (s, CO).

4-(5-Methoxycarbonyl-2-furyl)-4H-pyran (3b)

UV: 216 (gesättigte Lösung), 268, 309 sh. IR: 3 400, 3 350, 3 300 (NH₂), 3 107, 2 943, 2 905, 2 200 (CN), 1 724 (CO), 1 687, 1 672, 1 635, 1 858, 1 570. ¹H-NMR: 2.24 (s, 3 H, CH₃), 2.33 (s, 3 H, CH₃CO), 3.80 (s, 3 H, OCH₃), 4.89 (s, 1 H, H-4), 6.48 (d, 1 H, J=3.5, H-3'), 7.25 (d, 1 H, H-4'), 7.86 – 8.05 (m, 1 H, N=CH), 8.29 [s (br), 2 H, NH₂]. ¹³C-NMR: 18.8 (q, CH₃), 29.8 (q, CH₃CO), 34.1 (d, C-4), 51.7 (q, OCH₃), 69.7 (s, C-3), 109.0 (d, C-3'), 111.6 (s, C-5), 118.9 (s, CN), 119.5 (d, C-4'), 143.1 (s, C-5'), 155.4 (d, N=CH), 157.7 (s, C-2'), 158.1 (s, CO₂), 160.0 (s, C-6), 160.1 (s, C-2), 197.3 (s, CO).

4-(5-Phenylthio-2-furyl)-4H-pyran (3c)

UV: 212 (3.11), 250 (3.38), 267 (3.42), 309 sh (2.93). IR: 3 350 (NH₂), 3 120, 3 060, 2 985, 2 940, 2 200 (CN), 1 687, 1 640, 1 566. ¹H-NMR: 2.23 (s, 3 H, CH₃), 2.28 (s, 3 H, CH₃CO), 4.85 (s, 1 H, H-4), 6.41 (d, 1 H, J= 3.2, H-3'), 6.90 (d, 1 H, H-4'), 7.03 – 7.28 (m, 5 H, aromat. H), 7.85 – 8.00 (m, 1 H, N=CH), 8.24 [s (br), 2 H, NH₂]. ¹³C-NMR: 18.0 (q, CH₃), 29.0 (q, CH₃CO), 34.3 (d, C-4), 70.0 (s, C-3), 108.3 (d, C-3'), 111.7 (s, C-5), 118.2 (s, CN), 120.3 (d, C-4'), 126.0 (d, C-*para*), 126.6 (d, C-*meta*), 128.8 (d, C-*ortho*), 135.4 (s, C-*ipso*), 140.8 (s, C-5'), 154.7 (d, N=CH), 156.1(s, C-2'), 159.7 (s, C-6), 159.7 (s, C-2), 196.9 (s, CO).

6-Acetyl-4-amino-5-(5R-2-furyl)-7-methyl-4H-pyrano[2,3-d]pyrimidine (4 a - 4 c)

5 mmol der Verbindung 3 in 20 ml Ethanol (50%ig) werden 5 h unter Rückfluß erhitzt. Nach Abkühlen der Lösung im Eisbad wird der ausgeschiedene Niederschlag des Produktes 4 abgesaugt und aus Ethanol umkristallisiert.

5-(2-Furyl)-4H-pyrano[2,3-d]pyrimidin (4a)

UV: 219 (3.17), 244 sh (2.97), 262 (2.95). IR: 3 380, 3 300 (NH₂), 3 200, 3 075, 2 880, 1 660, 1 605, 1 540. MS: 272 (15), 271 (M^+ , 100), 256 (20), 254 (5), 243 (9), 242 (31), 229 (7), 228 (56), 226 (6), 200 (28), 184 (8), 173 (5), 159 (4), 158 (5), 146 (8). ¹H-NMR: 2.30 (s, 6 H, 2 × CH₃), 5.29 (s, 1 H, H-5), 6.30 (s, 2 H, H-3' und H-4'), 7.11 [s (br), 2 H, NH₂], 7.47 (dd, 1 H, J=1.8, J=0.9, H-5'), 8.05 (s, 1 H, H-2). ¹³C-NMR: 19.1 (q, CH₃), 29.7 (q, CH₃CO), 29.8 (d, C-5), 93.6 (s, C-10), 106.6 (d, C-3'), 110.3 (d, C-4'), 113.2 (s, C-6), 142.5 (d, C-5'), 153.6 (s, C-2'), 156.6 (d, C-2), 158.3 (s, C-7), 161.5 (s, C-9), 162.2 (s, C-4), 197.7 (s, CO).

5-(5-Methoxycarbonyl-2-furyl)-4H-pyrano[2,3-d]pyrimidin (4b)

UV: 217 (3.11), 246 (3.22), 265 (3.35). IR: 3 360, 3 320 (NH₂), 3 130, 1 730 (CO), 1 660, 1 640, 1 560. ¹H-NMR: 2.34 (s, 6 H, $2 \times CH_3$), 3.73 (s, 3 H, OCH₃), 5.39 (s, 1 H, H-5), 6.50 (d, 1 H, J=3.5, H-3'), 7.15 (d, 1 H, H-4'), 7.18 [s (br), 2 H, NH₂], 8.08 (s, 1 H, H-2). ¹³C-NMR: 19.4 (q, CH₃), 30.0 (q, CH₃CO), 30.3 (d, C-5), 51.8 (q, OCH₃), 92.7 (s, C-10), 109.5 (d, C-3'), 112.8 (s, C-6), 119.3 (d, C-4'), 143.1 (s, C-5'), 156.9 (d, C-2), 158.1 (s, C-2'), 158.6 (s, C-7), 159.1 (s, CO₂), 161.6 (s, C-9), 162.3 (s, C-4), 197.3 (s, CO).

5-(5-Phenylthio-2-furyl)-4H-pyrano[2,3-d]pyrimidin (4c)

UV: 216 (3.37), 242 (3.46), 262 (3.23). IR: 3355, 3330 (NH₂), 3170, 3130, 3060, 1655, 1640, 1600, 1560. ¹H-NMR: 2.30 (s, 6H, $2 \times CH_3$), 5.34 (s, 1H, H-5), 6.41 (d, 1H, J=3.2, H-3'), 6.76 (d, 1H, H-4'), 6.88 – 7.33 (m, 7 H, aromat. H und NH₂), 8.06 (s, 1H, H-2). ¹³C-NMR: 19.2 (q, CH₃), 29.9 (q, CH₃CO), 30.4 (d, C-5), 93.0 (s, C-10), 109.2 (d, C-3'), 113.0 (s, C-6), 120.7 (d, C-4'), 126.4 (d, C-*para*), 126.4 (d, C-*meta*), 129.2 (d, C-*ortho*), 135.3 (s, C-*ipso*), 140.5 (s, C-5'), 156.8 (d, C-2), 158.4 (s, C-2'), 158.6 (s, C-7), 161.5 (s, C-9), 162.3 (s, C-4), 197.5 (s, CO).

Literatur

- [1] Junek H., Aigner H. (1973) Chem. Ber. 106: 914
- [2] Subba R. A., Mitra R. B. (1974) Indian J. Chem. 12: 1028
- [3] Sharanin Y. A., Klokol G. V. (1983) Khim. Geterotsikl. Soedin 1983: 277
- [4] Schulte K. E., von Weissenborn V., Tittel G. L. (1970) Chem. Ber. 103: 1250
- [5] Schulte K. E., Reisch J., Mock A., Kauder K. H. (1963) Arch. Pharm. (Weinheim) 296: 235
- [6] Seoane C., Soto J. L., Quinteiro M. (1986) J. prakt. Chem. 328: 35
- [7] Marchalín Ś., Ilavský D., Kováč J., Bruncko M. (in press) Collect. Czech. Chem. Commun.
- [8] Taylor E. C., McKillop A. (1970) The Chemistry of Cyclic Enaminonitriles and o-Aminonitriles. In: Taylor E. C. (ed.) Advances in Organic Chemistry: Methods and Results, Vol. 7. Interscience, New York, p. 238
- [9] Ohtsuka Y. (1970) Bull. Chem. Soc. Jap. 43: 3909
- [10] Watson A. A. (1977) J. Org. Chem. 42: 1610
- [11] Morimura S. (1980) Heterocycles 14: 1449
- [12] Heinisch G., Holzer W., Nawwar G. A. M. (1986) Monatsh. Chem. 117: 247
- [13] Pascual C., Martin N., Seoane C. (1985) Magn. Reson. Chem. 23: 790

Eingegangen 13. Januar 1989. Angenommen 13. April 1989